Distributed Boundary Coverage with a Team of Networked Miniature Robots using a Robust Market-Based Algorithm Citation

نویسندگان

  • P. Amstutz
  • N. Correll
  • Patrick Amstutz
  • Nikolaus Correll
  • Alcherio Martinoli
چکیده

We study distributed boundary coverage of known environments using a team of miniature robots. Distributed boundary coverage is an instance of the multi-robot task-allocation problem and has applications in inspection, cleaning, and painting among others. The proposed algorithm is robust to sensor and actuator noise, failure of individual robots, and communication loss. We use a market-based algorithm with known lower bounds on the performance to allocate the environmental objects of interest among the team of robots. The coverage time for systems subject to sensor and actuator noise is significantly shortened by on-line task re-allocation. The complexity and convergence properties of the algorithm are formally analyzed. The system performance is systematically analyzed at two different microscopic modeling levels, using agent-based, discrete-event and module-based, realistic simulators. Finally, results obtained in simulation are validated using a team of Alice miniature robots involved in a distributed inspection case study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collaborative coverage using a swarm of networked miniature robots

We study distributed coverage of environments with unknown extension using a team of networked miniature robots analytically and experimentally. Algorithms are analyzed by incrementally raising the abstraction level starting from physical robots, to realistic and discrete-event system (DES) simulation. The realistic simulation is calibrated using sensor and actuator noise characteristics of the...

متن کامل

Comparing Coordination Schemes for Miniature Robotic Swarms: A Case Study in Boundary Coverage of Regular Structures

We consider boundary coverage of a regular structure by a swarm of miniature robots, and compare a suite of three fully distributed coordination algorithms experimentally. All algorithms rely on boundary coverage by reactive control, whereas coordination of the robots high-level behavior is fundamentally different: random, self-organized, and deliberative with reactive elements. The self-organi...

متن کامل

Coordination SChemeS for diStributed boundary Coverage with a Swarm of miniature robotS: SyntheSiS, analySiS and experimental validation

We provide a comparison of a series of original coordination mechanisms for the distributed boundary coverage problem with a swarm of miniature robots. Our analysis is based on real robot experimentation and models at different levels of abstraction. Distributed boundary coverage is an instance of the distributed coverage problem and has applications such as inspection of structures, de-mining,...

متن کامل

Stability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables

In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...

متن کامل

A topology control algorithm for autonomous underwater robots in three-dimensional space using PSO

Recently, data collection from seabed by means of underwater wireless sensor networks (UWSN) has attracted considerable attention. Autonomous underwater vehicles (AUVs) are increasingly used as UWSNs in underwater missions. Events and environmental parameters in underwater regions have a stochastic nature. The target area must be covered by sensors to observe and report events. A ‘topology cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009